Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowd-Sourced Content1

نویسندگان

  • Anindya Ghose
  • Panagiotis G. Ipeirotis
  • Beibei Li
  • Susan Athey
  • Peter Fader
  • Francois Moreau
  • Aviv Nevo
  • Minjae Song
  • Daniel Spulber
  • Catherine Tucker
چکیده

User-Generated Content (UGC) on social media platforms and product search engines is changing the way consumers shop for goods online. However, current product search engines fail to effectively leverage information created across diverse social media platforms. Moreover, current ranking algorithms in these product search engines tend to induce consumers to focus on one single product characteristic dimension (e.g., price, star rating). This approach largely ignores consumers’ multi-dimensional preferences for products. In this paper, we propose to generate a ranking system that recommends products that provide on average the best value for the consumer’s money. The key idea is that products that provide a higher surplus should be ranked higher on the screen in response to consumer queries. We use a unique dataset of U.S. hotel reservations made over a three-month period through Travelocity, which we supplement with data from various social media sources using techniques from text mining, image classification, social geotagging, human annotations, and geo-mapping. We propose a random coefficient hybrid structural model, taking into consideration the two sources of consumer heterogeneity the different travel occasions and different hotel characteristics introduce. Based on the estimates from the model, we infer the economic impact of various location and service characteristics of hotels. We then propose a new hotel ranking system based on the average utility gain a consumer receives from staying in a particular hotel. By doing so, we can provide customers with the “best-value" hotels early on. Our user studies, using ranking comparisons from several thousand users, validates the superiority of our ranking system relative to existing systems on several travel search engines. On a broader note, this paper illustrates how social media can be mined and incorporated into a demand-estimation model in order to generate a new ranking system in product search engines. We thus highlight the tight linkages between user behavior on social media and search engines. Our inter-disciplinary approach provides several insights for using machine learning techniques in economics and marketing research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Estimating Demand for Hotels by Mining User-Generated and Crowd- Sourced Content on the Internet”

User-Generated Content (UGC) is changing the way consumers shop for goods. It is increasingly being recognized that the textual content of product reviews is an important determinant of consumers’ choices, over and above any numeric information. Similarly, websites that facilitate the creation of social tags by users can influence the desirability of a product or service. Moreover, one can harn...

متن کامل

Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content

User-Generated Content (UGC) on social media platforms is changing the way consumers shop for goods. However, current product search engines fail to effectively leverage information created across diverse social media platforms. Moreover, current ranking algorithms in these product search engines tend to induce consumers to focus on one single product characteristic dimension (e.g., price, star...

متن کامل

Designing Ranking Systems for Hotels on Travel Search Engines to Enhance User Experience

Information seeking in an online shopping environment is different from classical relevance-based information retrieval. In this paper, we focus on understanding how humans seek information and make economic decisions, when interacting with an array of choices in an online shopping environment. Our study is instantiated on a unique dataset of US hotel reservations from Travelocity.com. Current ...

متن کامل

Towards Designing Ranking Systems for Hotels on Travel Search Engines: Combining Text Mining and Image Classification with Econometrics

In this paper, we empirically estimate the economic value of different hotel characteristics, especially the location-based and service-based characteristics given the associated local infrastructure. We build a random coefficients-based structural model taking into consideration the multiple-levels of consumer heterogeneity introduced by different travel contexts and different hotel characteri...

متن کامل

The Economic Impact of User-Generated Content on the Internet: Combining Text Mining with Demand Estimation in the Hotel Industry

Increasingly, user-generated product reviews, images and tags serve as a valuable source of information for customers making product choices online. An extant stream of work has looked at the economic impact of reviews. Typically, the impact of product reviews has been incorporated by numeric variables representing the valence and volume of reviews. In this paper, we posit that the information ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011